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Within the framework of Green's functions techniques, a definition is discussed of the optical potential 
in terms of the self-energy of a particle. A theoretical expression for this potential is given based on a version 
of the independent pair approximation for nuclear matter. Identical dispersion relations are shown to be 
valid for both the exact and the approximated self-energy. A discussion is presented regarding the relation 
between the independent pair approximation and the impulse approximation. The region of validity for the 
latter has been estimated. Quantities related to the self-energy, spectral function, and optical potential for 
a particle above the Fermi sea have been calculated for a given nuclear force. Tolerable agreement with 
experiment is obtained for the real part of the optical potential. Reasons why only the trend of the imaginary 
part is reproduced can be partly understood. An effective mass approximation is shown to be valid for a 
wide range of particle and hole energies. In conclusion, a discussion of related approaches is presented. 

1. INTRODUCTION 

THERE exists a variety of attempts to calculate 
from basic interparticle interactions the optical 

potential which replaces a medium as a scatterer. It is 
not intended to review these attempts, rather a few 
treatments will be mentioned which bear some relation 
to the calculation presented below. 

A first solution of the problem has been given by 
Watson and collaborators1 who developed the multiple 
scattering theory as a tool to describe the optical 
potential. Although conceptually clear a solution is 
practical only in simplified situations. Particularly 
favored is the so-called impulse approximation2,3 valid 
for high energies of the projectile. The approximation is 
aimed to express the optical potential in scattering 
amplitudes of the elementary interaction and in average 
properties of the medium like the momentum distribu
tion of the constituent particles. 

More or less opposite to the impulse approximation 
one finds straightforward perturbation calculations in 

* The research reported in this document has been sponsored in 
part by Office of Scientific Research, OAR through the European 
Office, Aerospace Research, U. S. Air Force. 

1 K. M. Watson, Phys. Rev. 89, 575 (1953); N. Francis and 
K. M. Watson, ibid. 92, 291 (1953); W. B. Riesenfeld and K. M. 
Watson, ibid. 102, 1157 (1953). 

2 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952); 
G. F. Chew and G. C. Wick, ibid. 83, 636 (1952). 

3 A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys. 
(N.Y.) 8, 551 (1959). 
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case the interparticle interaction is nonsingular.4 

Interest there centers mostly around the second-order 
term, where the first nonvanishing contribution to the 
imaginary part of the optical potential originates. 

Perturbation theory for the optical potential meets 
with the same difficulty as the corresponding theory for 
the binding energy of the medium in the case of singular 
forces. Indeed one has corresponding to the Brueckner-
Goldstone theory for nuclear matter an approach to a 
calculation of the optical potential, where selected terms 
in each order are summed in a reaction matrix term.5 

Parallel to these developments many attempts have 
been made in scattering theory to eliminate all but the 
elastic channels.6 Here also practical results are meager. 
In addition the inclusion of the Pauli principle poses 
serious difficulties in the case where the projectile and 
the intermediate particles are indistinguishable.7 

A definition of the optical potential which is satis
factory from all points of view has been given by 
Bell and Squires.8 These authors brought forward the 
almost evident relation between the self-energy of the 

4 L. Verlet, Ph.D. thesis, Universite de Paris, 1959 (unpub
lished); B. Jancovici, Nucl. Phys. 21, 256 (1960). 

5 K. A. Brueckner, R. J. Eden, and N. C. Francis, Phys. Rev. 
100, 891 (1955); G. L. Shaw, Ann. Phys. (N.Y.) 8, 509 (1959). 

6 H . Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958). 
7 H. Feshbach, Ann. Phys. (N.Y.) 10, 287 (1962). 
8 J. S. Bell and E. J. Squires, Phys. Rev. Letters 3, 96 (1959); 

J. S. Bell, Lectures of the Many-Body Problem, Naples 1960. 
(Academic Press Inc., New York, 1962), p. 91. 
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particle due to the interaction with the medium and the 
effective potential replacing the latter. The derivation 
given stressed a linked cluster approximation, but 
clearly any theory aimed at a calculation of the self-
energy is suitable for a calculation of the optical 
potential. 

In the following we present such a calculation based 
on the technique of Green's functions and not on 
perturbation theory.9 An approximation to this theory, 
the independent pair approximation (IPA), exploits 
the fact that for nuclear matter the average interparticle 
distance exceeds the correlation length. This approxima
tion has recently met with successes in a determination 
of the average binding energy and density of nuclear 
matter.10*"12 Those calculations may be extended to 
determine other interesting quantities like particle 
energies above the Fermi energy. We do not intend to 
exhaust present knowledge of internucleon interactions 
or to start from a given meson-nucleon interaction.18 

Rather we wish to perform a model calculation with the 
same simple central nonlocal force, which was at the 
basis of the nuclear matter calculation mentioned above. 

An outline of the theory can for instance be found in 
the work of Martin, Schwinger, and Puff9'10 (referred to 
as MSP) and no repetition of arguments is presented. 

Section 2 contains a compilation of some formulas 
basic for a calculation of the self-energy of a particle. 
It is then discussed how one can arrive at a definition 
of the optical potential. 

Section 3 contains some partly known results on 
analytical properties of the self-energy of a particle as 
derived in the exact theory and which results are 
apparently also valid in the IPA. 

It will appear that the IPA and the impulse approxi
mation share a formal similarity and in particular a 
common high-energy limit. An estimate of the energy 
for which off-energy reaction matrix elements appearing 
in the IPA may be replaced by elements on the energy 
shell is possible and is described in Sec. 4. 

Section 5 contains the actual results of the computa
tions of the real and imaginary parts of the self-energy, 
the spectral function and the optical potential itself. 

In the last section we finally discuss the relation of 
our approach to a Brueckner-type calculation on one 
hand and a typical nonperturbative approach recently 
brought forward by Sitenko.14 

2. THE OPTICAL POTENTIAL IN THE INDEPENDENT 
PAIR APPROXIMATION 

We shall present in this section some relations 
between Green's function and related quantities. For 

9 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
10 R. D. Puff, Ann. Phys. (N.Y.) 13,,317 (1961). 
11 D. S. Falk and L. Wilets, Phys. Rev. 124, 1887 (1961). 
12 J. C. Reynolds and R. D. Puff, Phys. Rev. 130, 1877 (1963). 
13 F. E. Bj^rklund, B. A. Lippmann, and M. J. Moravcsik, 

Nucl. Phys. 29, 582 (1962); J. Dabrowski, ibid. 37, 647 (1962). 
14 A. G. Sitenko, Nucl. Phys. 39, 506 (1962). 

proofs we refer the reader to the abundant literature, 
in particular to that part which deals with Green's 
functions defined as thermal averages.940 The latter 
satisfy particular simple boundary conditions which 
enable a calculation of properties of the ground state at 
temperature zero in an admittedly indirect, but 
relatively simple, fashion. 

Let | NO) be the ground state of a zero temperature, 
many-body system. Ground-state matrix elements of 
operators are then defined as 

<iTO|.Y|M)>slim l i m Z - ^ r ^ O ) 

X T r { e x p [ - i r ( H - / i ^ ] ^ } , (1) 

where E and N are the Hamiltonian and number 
operator of the system enclosed in a volume 0. ir 
= (kT)™"1 is a parameter related to the temperature and 
fi stands for the chemical potential of the system. Z 
finally is the grand canonical partition function, 

Examples of averages mentioned in Eq. (1) are 
^-body Green's functions defined by 

G»(i- • *#; i'- • -»0=(-Wol rMi) • • •*(»), 
X^(nO--^t(lO}|iVO>. (2) 

T is a time ordering operator acting on the field opera
tors ^. Its coordinate l = r^i, may in fact contain 
internal variables like spin and isospin as well, but those 
are usually not denoted explicitly. 

Green's functions for special coordinate arrangements 
contain optimum information about the system, like 
momentum distribution pair correlation, etc. Unfor
tunately those functions cannot be expressed explicitly, 
but appear instead coupled to correlation functions of 
different order. For example, the first equation in this 
hierarchy reads in a summation convention valid for 
repeated indices (%=2m=t: G^Gi). 

(i—+A1^fAG(l)r)-i(12\v\34)G2(3A,2nf) 

•-8(1,10. (3) 

2+=3^2+, with t+ a time infinitesimally larger than t. 
The interaction appearing in Eq. (3) is only for sake of 
convenience written as {\2\v\lf2f) but is chosen to be 
time-independent and at worst nonlocal in relative 
space coordinates. 

Translational invariance in time and space coor
dinates (the latter holding for an infinite medium) are 
exploited upon introduction of a momentum-frequency 
representation. Let us take for example G°, being the 
solution of Eq. (3) for v=0 retaining however the 
chemical potential # of the system in interaction. 

Its Fourier transform reads 

G°(k6>)= lim ( « - k * + H - « ) - V (4) 

It will be noted that the negative-frequency portion of 

file://{/2/v/
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the usual Feynman propagator is absent if ju<0, 
which is the case for a self-bound fermion system dis
cussed here. 

The formal solution to (3) can with the help of G° be 
written as 

then 

lGQto)T*=t(?(Myi-'0(Jto), (5) 

which equation defines 13(ko>), the self-energy of the 
particle. Instead of this relation between G and 13, one 
usually studies a similar one after introduction of A, 
the spectral function of G(kco), related to the latter by 

G(kz)--•L 
A(ho')dco' 

, Z — fc/ I'K 
z nonreal. (6) 

A satisfies as a consequence of the commutation relation 
for \f/, \jA at equal times 

do) 
A Qua)—=1 

, 2w 
(7) 

and is as usual related to the discontinuity of G(kco) 
across the real axis: 

A ( M = lim f[G(k, <o+u)-G(k, w - w ) ] . (8) 

After substituting (5) into (8) one obtains 

T(kco) 
AQsu) = 

where 
[a)-€(M]2+ir2(kw) 

(9) 

€(kw)=k2-M+ReeU(kcu), 

r(ka)) = -2ImeD(k,w+i€). (10) 

For values of o>, for which r = 0 , A (kw) may be written 
as 

^(kco) = 27rp(k)a{aj-co(k)}, (11) 

with co(k) solution of 

w = €(kco) = k2-M+Ree0(kw) 
and 

r (dRe13(ka>)l T 1 

P(k)= 1 -

(12) 

(13) 
w=w(k)-

One readily establishes from Eq. (2) for n=l that 
p(k) [Eq. (13)] is just the momentum distribution of a 
particle provided T = 0 for all w<0. 

In case Im13(k6>) = 0, a>=co(k) establishes a definite 
energy momentum relation for a, then stable particle 
and F(k) = 13(kco(k)) is a true self-consistent potential 
for that particle. If, however, ImD^O, 13 still retains 
the approximate meaning of a potential if it is only 
weakly energy-dependent, or if Im13 is in a sense small 
compared to ReD. More precisely, if 

p(k)7(k) 
il(kto)« ^2wp(k)8{o}-a)(k)} 

with 
T(k)=p(k)r{k ) W(k)}. (IS) 

For states satisfying (14) there is still an approximate 
energy-momentum relation 

c(k) = k 2-M+F(k) ; 

but the particle now has a lifetime 

r = Ci7(k)]-1 . 
In other words 

(12a) 

(16) 

Fi(k) = Re1){k,co(k)}, 

F2(k)=iT(k) = -p(k) Im1){k, w(k)} (17) 

as real and imaginary parts of the field experienced by 
the particle can be naturally defined as the optical 
potential. If condition (14) turns out not to be fulfilled, 
the energy dependence of 13 (ko?) is too strong and the 
concept potential loses its meaning. 

In relation to this definition we should like to stress 
that the exact 13(kco) can indeed unambiguously be 
defined as an energy-dependent field. This is less 
straightforward in any approximate theory. The 
difficulty arising is similar to the one met in the defini
tion of effective fields for particles in the medium and is 
referred to as the rearrangement effect. 

We further remark that if the medium were finite an 
average over many compound states would, for 
instance, determine the width %y(k) of the optical-model 
state with energy w(k).15 For an infinite medium no 
such average is necessary since the spectrum is con
tinuous. 

Having stressed the relation between self-energy and 
optical potential we now proceed to a determination of 
the former from Eqs. (3) and (5). Martin, Schwinger, 
and Puff9,10 show how one arrives at the following, 
equation for G2: 

G2(12,1/20=G(11,)G(220-G(12,)G(21/) 
+A1o(12,34)(34|^|56)G2(S6,l,20+C. (18) 

The first two terms represent the lowest order Hartree-
Fock approximations to G2. The second term contains 
implicit two-particle correlations, and is characterized 
by the propagator 

A10(12,34)=-{G°(13)G(24)+G(14)G°(23)}. (19) 
2 

The last term—in fact defined by Aio—contains the 
difference of intrinsic three-particle correlations and 

p(k)(ar/dw)«^ck)«i, (14) 15 G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). 
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correlations of lower order: 

Cs5£fGo(14')<3'4:/1v134>[G2(234, 2 ,3+ ,l /) 

-G(22 ,)G2(34,3+ ,l ,)+G(21 /)G2(34,3+ ,2 /) 

-G(23')G2(34,1'2') 

— {same expression with 1 <-> 2} . (20) 

The neglect of C amounts to a factorization of three-
particle correlations in a correlated pair (described by 
G2) and a third one moving in some average field, 
provided the pair is acted upon by a strong, short-range 
interaction causing the correlation.16 Pairs of particles 
thus appear as independent entities in this approxima
tion, which should be reasonable for a correlation length 
of order or smaller than the average distance between 
particles. 

After neglecting C in (18) one proceeds to a solution 
of G from (3) by introducing a T matrix through 

(12|^ |34)G2(34,l ,2 ,)-(12|r |34)G(31 /)G(42 /) . (21) 

The Fourier transform of T for the case needed (/i=/2 , 
h~Q is easily shown to satisfy the following integral 
equation 

dk" 
-<kMk"> (k|rK(co)|k')=(k|Ki-Pe) |k')+/ 

(2ir)3 

X A 1 o ( k 1 " k 2 » < k " | r K ( c o ) | k ' } ) (22) 

with Pe a complete exchange operator and k, K relative 
and center-of-mass momenta. We have also introduced 
the Fourier transform of the propagator Aio, Eq. (19) 
which can be expressed in terms of the spectral function 
A, (6), as 

'dcoT 4 ( k i ' V ) 
Aw(k: 

1 f 
i ' V » = - / 

2 7 0 
2d '-k2"2+/x+ie 

+ (ki"->k,")l (23) 

The form (23) for Aio enables a determination of the 
analytical properties of T, (22). Much like in the case 
of the free-particle scattering matrix17 one finds that T 
is an analytical function in the complex co plane except 
for a branchpoint at co= — /x and possibly for poles eiy 

the location of which is dependent on k, k', and fj,. 
Those singularities correspond to scattering states and 
bound states of the pair in the medium which in turn 
is described by Aio. As a further property we mention 
that T has its first Born term as high-energy limit 

<k|rK(*)|k')—^<kKi-P«)|k'>. 
|zj—>oo 

(24) 

16 The approximation C = 0 violates fundamental conservation 
laws [G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961)] 
which is, however, not an uncommon practice in many approx
imate theories. For further remarks the reader is referred to 
Ref. 12. 

17 See for instance M. Goldberger, Relations de dispersion et 
particules Sttmentaries, Ecole d'Ste, Les Houches, I960 (Dunod 
Cie., Paris). 

Returning to the solution for the self-energy one first 
substitutes Eq. (21) into (3). The result is an equation 
of the form (5), with the self-energy "0 expressed in 
terms of the scattering matrix T: Z6(x) = ^(l+x/\x\)"] 

' lim / 
n-XH-J 

dkv doo'< 

*^*J (2TT)3 2TT' 

X(k| T^+^+ie) |k)G(k2co2') 

- / 

C&2 do)2 

(2TT)3 2 / 
-,4(k2co2)0(—co2) 

X(kl r K (co 1 + W 2 +ie ) |k ) . (25) 

The last result has been obtained by substituting the 
spectral representation (6) for G and performing the 
integration over co2' keeping in mind the analytical 
properties of T. The same also claim a real value for 
^(kico) for co <0, provided the lowest bound state of T 
satisfies e^>0.18 In this case one may apply (11) and 
infers from (25) for all coi 

V(khm+ie)--
dk2 

-P(k2) 
k2^kf (27r)3 

X(k|rK{co1+co(k2)+i6}|k). (26) 

Since co2 in (25) is limited to co2 ̂  0, a parallel upper 
limit occurs for a finite k2 in (26) and it is then natural 
to call that limit the Fermi momentum of the system in 
interaction. I t satisfies 

co(k/) = k / - M + e O ( k / , 0 ) = 0. (27) 

Equation (22), (26), (11), and (13) have in a certain 
approximation been used to calculate for co<0 the 
effective field acting on a particle in an occupied state 
(k<k/), which calculation bears directly on a determina
tion of the ground-state energy and density11,12 (See 
also Sec. 5). For a determination of the optical potential 
one also needs ^(kco) for cu>0. Actually, frequencies 
—JJL>o)>0 are of minor importance. Those correspond 
according to the definition of the separation energy p of a 
saturating system to unoccupied bound states. For 
true "scattering states," co>—ju and V calculated by 
(26), (22), and (23) will possess both real and imaginary 
parts reading [ P —> principal value; 12=0(kico2; k2), the 
argument of T in Eq. (26)] 

ReeO(kio>i) 

dk, r ( k i T K ^ W I k , ) r dk2 r 
• / - — p ( k , ) 
J (2TT)3 L 

P(k2) £ • 
tt-ei 

+Re<k| r K > i + u ( k 2 ) + ; € | k ) l . (28) 

18 The situation ej<0 corresponds to a Copper state for the pair 
in the medium and causes the ground state to be that of a super-
fluid system, with all pairs with higher energies being condensed 
in the Cooper state. [L. N. Cooper, Phys. Rev. 104, 1189 (1956). 
See also, for instance, A. Katz, Nucl. Phys, 42, 394, 416 (1963)]. 
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Imt)(ki,«i+f€) 

dk2 -I (2T) 
-p(kO[-*-£<k|rr<»Mk>8{<rfi(ki«i;k«)-«} 

+Im<k|:rK/{a>1+«(k,)+f«} |k>]. (29) 

One notices that the separation of T in a part due to 
poles €i and a remainder Tf shows that, although 
l m r = 0 for coi<—/*, Imt) receives a contribution for 
—fx+ei<o)i<—fjL from bound states described by T. 

Before giving numerical results we present in the 
following a discussion of a few properties of V. 

3. ANALYTICAL BEHAVIOR OF VQLCO) 

General analytical properties of exact one-body 
propagators G(koj) and the self-energy V(kco) have 
been discussed by Luttinger.19 As already recalled 
above, G is analytic in the complex to plane except for 
the real axis. Its asymptotic behavior is by use of (7) 
inferred from (6), namely 

1 1 r00 do)' / 1 \ 
G(kz) > - + — /• a'A (kto')—+01 — J. (30) 

From (4) and (5) one then concludes that V(kz) is 
analytic in the entire complex z plane with the exception 
of the real axis. It further has the following asymptotic 
behavior 

do/ 

of the momentum distribution20 p(k) = {N0\ayJak\N0). 

r dk2 
J7(k0= / p(k8)<k|w(l-P#)|k>. (34) 

J (2TT)3 

One now has the tools to establish in the usual 
manner17 a dispersion relation for the exact self-energy: 

Jk2 r dk2 

RecU(k1co1)= / p(k2)<k|t>(l-P.)|k> 
J (2ir)3 

ImV{khc»f+u) 

+- &>', (35) 
7T J Mi 0) — 0 ? i 

where Mi designates the location of the branch point. 
Eqs. (34) and (35) are rigorous results and express 
the causal nature of 'O(kco) viewed upon as essentially 
being the index of refraction. 

We now turn to the independent pair approximation 
and seek to establish a dispersion relation for the 
approximated V, The analytical properties of T stated 
above enables one to express T by means of the Cauchy 
integral 

(k|rK(2)|k')= 
J_ r{\\TK{z')\k'} 

2wiJc z'—z 
(36) 

where the contour C consists of a loop around the real 
axis encircling the lowest bound state ei and an infinite 
circle. In the usual fashion one writes 

r do>f 

U(k)=limV(kz) = k^fx- a/iiflfc/)—. (31) (k\TK(z)\k') = (k\v(l-~Pe)\k')+j: 
<k|r*«>(*)|k'> 

Z— €i 

Luttinger's paper does not contain an explicit calcula
tion of U(k), which is, however, straightforward. We 
denote by |iV+l, E:N+I, a) the eigenstate of a system of 
N+l particles, characterized by an excitation energy 
EN+i—p above the ground state of the Ar-particle 
system and further by a completing set of quantum 
numbers a. The spectral function then reads in terms of 
ak, the field operator in k space [see for instance Ref. 
(19)]. 

A (kco) = £ | (N0\ ak\ N+l, EN+h a) \ *8(a-Ei,+1+Em) 
a 

X«(«)+£l<iV'0]a tt |tf-l>£*_i,a>|» 
a 

X5(w-EN^+EN0)e(-w) (32) 

Upon using this result the integral in Eq. (31) 
becomes 

Im<k|7Y(o/+;e)|k') 
+ - / — — — —da'. (37) 

1 rK 

7T J M> 

The first terms on the right-hand side are the asymptotic 
Born term and the contributions due to the poles in T. 
The last term stems from the region where T shows a 
discontinuity in its imaginary part across the real axis. 

From Eq. (26) expressing the approximate "0 one 
finally derives by use of (28) and (29) (wi real) 

Ree0(kio>i) 

- / 

dk2 <k|lV«(0)lk> 
•p(M;<kKi-p.)|k>+£-

(2x)3 ' ' i 0-e< 

1 f Ln(k|7Y{»'+«(k,)+M}|k> i r. 
ft J Mi 

-du'l 
0) —OOl 

f 
do>' 

a>'A (W)—=k 2 - / *+<^0 | {ak[^akt]„ 

+ak^v,ak^}\NQ). (33) 

The final result for U(k) may then be written in terms 

• / 

dk2 

(2r) 
-P(k2)<kKi-pe)|k> 

+ 
l r: 
ft J Mi 

ImV(kho)'+ie) 
•do'. (38) 

o> — o>i 

J J. Luttinger, Phys. Rev. 121, 942 (1961), 

20 The result (34) has been given by Martin and Schwinger in 
the Hartree-Fock approximation and is also stated to hold 
generally (Ref. 9). For a different proof, see Ref. 21. 
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Eqs. (35) and (38) are identical provided p and V 
are replaced by their approximate values in the inde
pendent pair approximation. This somewhat surprising 
result can be understood in part. The appearance of the 
Born term in (38) is obvious, since any IP A is based on 
an equation of the type (22) being different only in the 
form of the propagator A.21 But such a Born or Hartree-
Fock limit for G2, Eq. (18), holds apparently also for 
the exact t)(kco). 

A dispersion relation for the energy-dependent 
optical potential V, based on a formal solution of the 
problem of coupled channels, has also been derived by 
Feshbach.6 It is quite clear there that Born elastic 
scattering dominates at high energy. The only difference 
between (35) and Eq. (2.5) of Ref. 6 lies in the absence 
of the exchange part in the Born term, due to neglect of 
antisymmetrization between incident and target nu-
cleons. The inclusion of the Pauli principle as worked 
out in Ref. 7 should of course yield the correct form (38). 

At this stage we recall that our results were intended 
as an extrapolation of the MSP theory for bound 
states to scattering states of low energy. In addition we 
have obtained results, which are also correct in the 
high-energy limit. It is therefore natural to determine 
the region of validity of this high-energy limit as 
compared to the result (26). 

4. INDEPENDENT PAIR APPROXIMATION 
AND IMPULSE APPROXIMATION 

The IPA as obtained by the neglect of C, Eq. (20), 
states that certain three-particle correlations can be 
f actorized in a pair correlation, while the third, spectator 
particle is only influencing through its average field 
or momentum distribution. Formulated in this way 
one readily sees that the independent pair approxima
tion is not too remote from the impulse approximation.2 

The latter is essentially a high-energy approximation 
in the additional assumption that the T matrix describ
ing the scattering of the correlated pair is taken to be 
on the energy shell. Both approximations under discus
sion employ a T matrix, be it with different propagators 
A, with the same Born term as the high-energy limit. 
It is therefore of interest to investigate at what energy 
the impulse approximation starts to deviate from Eq. 
(26). In this way one may get a feeling as to the validity 
of that aspect of the impulse approximation where 
free-scattering amplitudes are used instead of Eq. (26). 
It is clear, however, that nothing can be said about 
multiple-scattering corrections, which are lost in the 
basic assumption C=0 in Eq. (20). 

Let us restore the original momenta in (22) and define 

<kik2| Ar|kik2>s<kik2| 7,(co1+a)(fe)+i€) |kxk2) 
— <kxk21 r/Ck^+ks+^e) j kxk2>, (39) 

as the deviation in the T matrix if, instead of (22), the 
21 D. Koltun, R. D, Puff, A, S, Reiner, and L. Wilets (to be 

published), 

free-scattering matrix Tf would have been used in the 
expression for the self-energy (26). One readily finds 

<kik2|Ar|kik2> 
=<fci*2|r/(ki*+k2

J+i€)|kik2> 

+(fe1fe2| T ' ^ + W + i e ) W - A 1 0 ) 
Xr(co1+o3(ft2)+i€)|k1k2). (40) 

A rough estimate of (40) is obtained by a calculation 
in Born approximation (T—>v) and retaining first-
order terms in the expansion of A/--A10. We further 
assume Im'U^CRe'O in the high-energy limit, which 
establishes a relation between coi and ki [cf., Eq. (12)] 

co1=lim{k1
2-M+eO(k1o;i)} = ki2-M+F(k1). (41a) 

For w(k2), (ki<kf), we substitute the relation correct 
in the MSP approximation 

W(k2)=k2
2-M+F(k2) 

and thus arrive at 

(kifclArlkika) 

(41b) 

dki'dki' 

x-

7(ki)+7(kQ 

16TT2 f 

(2»)« 

K^ksHk/k/)!* 

{ki'+k^-fci^-ft^+M}* 

v(q)\'< 

-4k2 
-dq. (42) 

( k = ! (ki—k2)). For a Yukawa potential 

v(r) = — vQ(e-ar/ar), (43) 
one estimates 

(kxk.lArlkik,); 
x{F(ki) + 7 ( k a ) K 

2 a2{a2+4k2}2 

/3o:2+4k2 
/3az+4k* t\ 

\ ^ k) 
(44) 

The substitution (41a) assuming | Im e0|« |Re c0| is 
from (43) seen to be consistent provided k>a. Along 
the same lines we estimate 

(kik2|Ar|k!k2) <k|Ar|k) 

( k i f c l r / I W < k | r l k > B o r n 

7T VQLI) + VQL*) 3a2+4k2 

-v-2<k|*>(l-Pe)|k> a3(a2+4k2)2 
(45) 

Again k>a or &2~150 MeV seems a trustworthy 
estimate of the validity of the impulse approximation 
to Eq. (26). 
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5. NUMERICAL RESULTS FOR THE SELF-ENERGY, In order to keep contact as close as possible to 
SPECTRAL FUNCTION, AND OPTICAL POTENTIAL p revious developments and to profit from some results 
In an actual computation of the self-energy one obtained there, we use the same interaction which was 

has apparently to solve the following set of coupled at the base of the calculations of Puff, Falk, and Wilets. 
equations -^ *s a Yamaguchi potential supplemented by a "hard

shell" potential both acting in relative s states only, the 
(a) Assuming a spectral function one solves by means former being different in singlet and triplet spin states. 

of Eq. (23) for the T matrix (22). This potential reads 
(b) With the aid of this result, (26) yields the self-

energy 1). sin&rc sin£Vc 

(c) The spectral function A is then recovered from (16TT3)—x<k | ?; | k'> == limXc 

V by Eqs. (9) and (10). Xc_>0° * * 

The procedure, which has to be repeated till self-
consistency is reached, is apparently quite intricate. 

It has therefore already in the energy calculation of 
occupied states, co<0, been suggested to replace Aio 

10-

1 1 

(F+/32) (fc'2+0)2 
(48) 

in (22) by A0o,10~12 obtained by putting there 

A->A0=2wd(a)-k2+fi) 

with the result 

Aio-Aoo(kik2,a>) = [co-k1
2-k2

2+2M+^]-1 . (47) 

This approximation makes step (a) independent of A 
and reduces the computation to one single determina
tion of T and an independent treatment of the steps (b) 
and (c). 

The following set of parameters gives a fit for scattering 
lengths, effective ranges, deuteron binding energy eB 

(46) and singlet phase shift at 310 MeV: 

r/=0.4554 F , 

&ingiet= 2.004 B^ftrfpi^ 2.453 F"1, 

Ask,giet= 3.64037 F-3\tripiet= 8.6949 F~3. (49) 

The solution for the T matrix equation in singlet or 
triplet states can then be written as 

(327r3)-1<k|r(s)lk,)= A(z)\-•>[-
i i 

£ 2 + j 3 2 £ ' 2 + / 3 2 
-B(z)(\yi* 

sinkr0 1 

+ 
sinkrc 

k k'2+p k' k't+p2 

sinkrc sink'r, 
+ {1+C(z)}- lB*(z)-A(z){l+C(z))T-1. (50) 

The functions A, B, and C 

z=-2a2 

z = 2a2+ie 

are defined as 

A(z) 

7T2 

a 

a 

B(z) 

2x2X'/2 

2T2X"2 

a2+/32 

C(z) 

- 7 T 2 X 

/?(a+/?)2 . (51) 

ir2\ 

P(.a+0)* 

A calculation of binding energy and density of nuclear 
matter in its ground state requires T for z<0 only. 
Since T has no pole for z<0, V is purely real and 
consequently 

A(kw) = 27rp(k)8{a>-a>(k)}, w^0, (52) 

The momentum distribution p(k) and energies o>(k) in 
(52) have been calculated as11 (k /k/<l) 

p(k) = 0.87746+0.01422V^/-0.0264(VW2, (53) 

and 

w(k) = -88 .706- 47.285 */*/+183.283 (k/kf)
2 

-47.362(V^/)3[in MeV]. (54) 

The same functions have been used in the calculation 
of %}(kco) Eq. (26) for co>0 and the results for various 
values of k/kf are given in Figs. 1 and 2. Real and 
imaginary parts of V recall typical dispersive and 
absorptive behavior as expected from the familiar 
index of refraction of atomic or molecular systems. As an 
example of correspondence one notices the approximate 
coincidence of the point of inflexion in ReT) and the 
location of the maximum in Im^ (see Fig. 3). There 
are, however, also notable differences between the 
conventional behavior of an index of refraction for 
scattering of light and the self-energy of a particle. 
One notices that the point of coincidence stressed above 
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400 

FIG. 1. The real, dispersive part of the self-energy 1)(kco) as function of w for various values of k/k/>l. 

does not yield the resonance frequency w(k)+ju nor 
is there an evident relation between them. 

We further wish to remark that a renormalization of 
the curves Re(kco) for all k, [for instance through divi
sion by (2ir)~zjTdk2 p(k2)<k| v(l—Pe) | k), the asymptotic 
term of Ret)] is not possible here, since v contains a 
hard-core interaction (see discussion in Sec. 3). 

From the self-energy one can then proceed to a 
determination of the spectral function, A Eq. (9). In 
fact, only the value for which A reaches its maximum is 
necessary in a calculation of the optical potential where 
the propagator Aio is replaced by Aoo. We remark, 
however, that A as calculated in the Aoo theory is a 
natural first approximation to be used in step (a) of the 

FIG. 2. The imaginary, absorp
tive part of the self-energy V (kw) 
as function of a> for various values 
ofk/k/>l. 

450 
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program, sketched in the preceding section. The spectral 
function is moreover the cornerstone for a calculation 
of various other properties of nuclear matter derivable 
from the density propagator.22 As a last point we may 
mention that the outcome of the sum rule (7) provides a 
check on actual calculations. 

We have therefore plotted in Figs. 4 a few spectral 
functions for a range of k/kf values. To the extent that 
these functions show a pronounced resonance behavior 
we expect the lifetime of a particle to be long and the 
definition of a weakly energy-dependent optical poten
tial to be meaningful. One notices that the isolated peaks 
in A for k/kf ^1.27, merge with the background but 
remain fairly pronounced throughout. 

Table I contains results pertaining to quantities 
related to the spectral function and which we set out 
to calculate. We have entered in column 2 for a range 
of k/kf values the function p(k) Eq. (13).23 Columns 3 
and 4 contain the position of the maximum in the 
resonance curve and its width. The fifth column 
contains the value of the integrated spectral function 
and has to be compared with the exact value 1. The 
value of the parameter p(k)(dr/do>)w==w(k) determining 
the validity of the narrow resonance approximation to 
A [cf., (14)] is entered in column 6. The last two 
columns finally contain V\ and Vz, the values of the 
real and imaginary parts of the optical potential. Those 
were also separately plotted in Figs. 5 and 6 both as 
function of the momentum in the medium k/kf and as 
function of the energy of the particle. The conversion of 
those units is easily read off a plot of co (k) +/* as function 
of k (Fig. 7). Table II contains for k<kf some values of 
p(k), now the momentum distribution, which is also 

FIG. 3. Real and imaginary part of the self-energy for the 
selected value of k/kf —1A as function of a>. One notices the 
approximate coincidence of, respectively, the point of inflection 
and maximum in the two curves. 

the contribution to the integrated spectral function as 
far as co<0 is concerned. The third column then 
demonstrates the importance of the very weak but 
extended background A (kw) for co>0. 

Regarding these numerical results various remarks 
have to be made. We first see that, although for k<kf,A 
has the behavior (52) for co<0, A 5*0 for sufficiently 
large co and provides a weak background. One notices 
the close agreement with the exact value 1 of the 
integrated spectral function. This result, however, is 

FIG. 4. The spectral function A (kw) 
in MeV -1 as function of co for various 
values of k/kf. The same numerical 
scale is used to plot the strength of 
the 5 functions to which A reduces for 
the plotted values k/kf = lA and 
1.25. No background is shown for 
them. 
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22 A. S. Reiner, Phys. Rev. 129, 889 (1963); and (to be published). 
23 We wish at this point to distinguish betweenthe left-hand side of Eq. (13) for k$.kf. If the upper sign holds we shall use the 

notation p(k). If k<kf, p(k) will be used, which in the MSP theory equals the momentum distribution. 
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TABLE I. For various values of the momentum are given: columns 2, 3, and 4 strength, position of maximum, and full width of 
resonance in the spectral function; column 5 the integrated spectral function; column 6 the parameter determining the validity of the 
narrow-resonance approximation for A; columns 7 and 8 real and imaginary parts of the optical potential as function of the nucleon 
moment inside nuclear matter. 

k/kf 

1.1 
1.25 
1.3 
1.4 
1.5 
1.75 
2;0 
2.5 

?(k) 

0.877 

0.847 

0.8a 

0.83i 
0.828 

0.836 

0.88! 
0.90 

co(k) 
(MeV) 

19.98 
49.53 
59.8a 

80.18 
101.99 
161.3 
225.0 
365 

7(k) 
(MeV) 

0 
0 
0.55 
3.33 
6.62 

15.19 
24.4 
19 

/»00 

/ A (k<o)d(a/2ir 

J-„ 
0.98 
0.99 
1.0a 

0.99 
0.92 
0.89 
0.85 
0.98 

/ar\ 
T(-) 

\<W«(k) 

0 
0 
0.22 
0.11 
0.20 
0.41 
0.68 
0.7 

ViOO 
(MeV) 

-70 .0 
-58 .6 
-54 .9 
-48 .4 
- 4 L 5 
-23 .9 

- 8 . 6 
+16 

V2(k) 
(MeV) 

0 
0 
0.28 
1.67 
3.31 
7.60 

12.2 
9.5 

1 Particular computational difficulties bar accurate calculation of these quantities. 

not a measure for the correctness of the approximations 
used: The example of the ideal Fermi gas provides a 
case with (7) rigorously fulfilled for all values of L 

One may argue that (7) only expresses the anticom-
mutation relation for field operators at equal times. 
As such it should be satisfied by any approximation 
preserving complete symmetry between the particles. 
It has been shown in fact by Puff,10 and by Falk and 
Wilets11 that the A0o theory violates to a slight extent 

the Pauli principle, but the effect as reflected on the 
sum rule is apparently very small. 

The situation is somewhat different for k>kf. Since 
for any such momentum A (ko>) = 0, for co<0 the entire 
contribution to the sum rule comes from positive fre
quencies only. But 

/ 4 ( M - = l - p ( k ) 
Jo 2ir 

(55) 

I5.0| 

300 w(k)*/i(MeV) 

FIG. 5. Real part of the optical potential as function of momen
tum and energy. Experimental points are taken from Ref. 24. 
Uncertainties in experimental points are not shown. 

150 200 w(k)+/i.(MeV) 

FIG. 6. Imaginary part of the optical potential as function of 
momentum and energy. Experimental points are taken from 
Ref. 24. Uncertainties in experimental points (up to 5 MeV in 
magnitude) are not indicated. 
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FIG. 7. Plot of particle 
energies as function of 
momentum. 

2.00 

k/kf 

is the probability to find the momentum state k 
unoccupied. It is typical for the MSP approximation 
that there exists a sharp Fermi surface. All particle 
states with k>kf are thus unoccupied and the approxi
mate theory is bound to yield in a self-consistent way 
the result p(k) = 0 corresponding to no occupation of 
states k>kf. The small derivations from 1 as displayed 
in column 5 of Table I do correspond to the estimated 
accuracy of the calculations. 

We next wish to comment on the particle energies 
o>(k)+M of column 4 and shown in Fig. 7. The values 
can be well represented by the function 

a>(k)+/i^-105.S+8S,0f —j - 2 . 2 6 f - J in MeV, 

k/kf>l. (56) 

In other words an effective mass approximation with 

*»*/*»=0.60 (57) 

is valid up to momenta at least as large as k^2.5kf. 
Falk and Wilets11 find a slightly smaller value at k=kf. 
An effective mass more around ~0.5w fits energies of 
occupied states although fourth-order terms are more 
important for k<kf. 

One concludes that an effective mass approximation 
seems to be valid for essentially all relevant particle 
and hole states, which appear separated by a gap. This 
result together with a treatment "on the average"11 of 
the Pauli principle for particles in intermediate states 
from the premises of nuclear matter calculations by 
Bethe, Brandow, and Petschek24 based on the so-called 
reference spectrum, which is assumed to possess the 

properties sketched above. This point is not the only 
correspondence between the two approaches, but the 
discussion will not be pursued here [see however 
Ref. (21)]. 

We now discuss the comparison between the predicted 
and the experimental values for the optical potential. 
As to the latter, those are of course always parameter 
fits for an assumed functional dependence.25 These 
fits contain broad limits in particular for the imaginary 
part of the potential. 

As far as general trends are concerned the general 
predicted behavior for Vi is in fair agreement with 
experimental results, although the former seems to be 
systematically larger up to ~200 MeV. It is of interest 
to remark that the hard core is predicted to exert an 
ever more pronounced effect for high energies and to 
cause a change in sign for Vi at energies ~250 MeV. 

Concerning the imaginary part it seems that at 
best the trend of the uncertain experimental points 
seems to be reproduced. The theory describes the sharp 
increase and leveling off beyond ~150 MeV but the 
quantitive agreement is not satisfactory. We may, 

TABLE II. For values k<k/, the momentum distribution p(k), 
being the integrated spectral function for negative frequencies, 
is compared with the total integral. The difference shows the 
importance of the extended weak background for w>0. 

k/kf P») ' = / A (kco)tfco/27r / A (ka))dca/2iT 

0.2 
0.4 
0.6 
0.8 
1.0 

0.880 
0.880 
0.877 
0.872 
0.864 

0.98 
0.98 
0.98 
0.99 
1.00 

24 H. A. Bethe, B..H. Brandow, and A. G. Petschek, Phys. Rev. 
129, 225 (1963). 

25 See, for instance, H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49 
(1958). 
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however, bring forward the following argument, showing 
that there is room for a correction in particular for 
low-scattering energies. 

It has already been mentioned before that the A0o 
approximation causes ImeU = 0 for all co< —2/z+e^ 
~25.5 MeV. In the original approximation one expres
ses the optical potential in terms of a slightly different 
T matrix (22), which has a branch point at —JJL. Even 
if r(Aio) would show no isolated poles, Y ^ O from zero 
scattering energy on. A similar increase in 7 as shown in 
Fig. 6 but starting about 27 MeV lower will definitely 
improve the agreement. Discrepancies, however, will 
persist since nuclear matter calculations cannot account 
for absorption at the surface of an actual nucleus. 

Further discussion is deferred to the next section. 

6. DISCUSSION AND COMPARISON 

A comparison between experimental data from real 
nuclei and quantities calculated for nuclear matter is 
far from straightforward. On the experimental side 
lack of sufficiently accurate data is not the only barring 
factor. It has become clear in recent years that the 
variation of optical potential parameters with mass 
number is less smooth than originally assumed.26 It is 
therefore not well known to which values those param
eters converge in the limiting case of nuclear matter. 

We mentioned already the impossibility to calculate 
surface absorption in matter calculations. It seems 
unnecessary to stress that there are more points of 
difference in the behavior of an actual nucleus and 
nuclear matter. 

No less uncertainty stems from inherent inconsis
tencies introduced by any approximation. In principle, 
for instance, the same binding energy E/N or density p, 
should result in a given approximation when the equi
librium condition is zero pressure, n=d(E/N)/dp or 
(E/N)/p. This condition, however, is violated in any 
approximation and a different equilibrium density p 
results in each case. Together with p one gets different 
expressions for particle energies co (k) and the momentum 
distribution p(k), the numerical values of which are 
used in the calculations above. 

The remarks above show that one should not push a 
comparison between theory and experiment too far 
and be satisfied with tolerable agreement. 

Concerning the possibility to employ results of 
nuclear matter, calculations for various densities to 
simulate the situation in an actual nucleus, we remark 
that the MSP theory is not a suitable tool. There it is 
assumed that the system binds itself, which require
ment will not be fulfilled for low densities. 

We now discuss the comparison with other theories 
and deliberately limit ourselves to two approaches only. 
First those which have as central element a scattering 

26 See, for instance, F. G. Perey, Phys. Rev. 131, 745 (1963). 

matrix linearly related to the effective field acting on a 
nucleon and further an example of an essentially non-
perturbative theory. 

A representative of the first class of approaches is of 
course the Brueckner theory or any variant thereof. 
An exposition can for instance be found in the paper by 
Shaw,5 who incidently does use a folding procedure 
sketched above to determine the optical potential as 
function of the density as observed in an actual nucleus. 

The main point of difference with the Green's 
functions treatment seems to be the very quantity 
related to the T matrix. In a Brueckner-type theory 
this is directly the field experienced by a particle with 
given momentum. The energy momentum relation is 
presupposed and tested as to its self-consistency. Eden 
has shown27 that for the ground-state problem the self-
consistenty requirement is tantamount to a variational 
calculation of the ground-state energy. Such a require
ment is not necessarily rigorous for a scattering state. 

The quantity directly determined in the MSP theory 
is not the optical potential, but the energy-dependent 
self-energy. It is then the spectral function which 
determines both the energy-momentum relation and 
the condition for which such a relation has meaning. 

A recent calculation of the optical potential not based 
on perturbation theory is due to Sitenko.14 The starting 
point of his approach is Glauber's theory of high-energy 
scattering,28 which relates in lowest order the optical 
potential to the T matrix and the form factor n(k), 
the Fourier transform of the particle density. One 
notices the difference with the Brueckner or MSP 
theories where the momentum distribution p(k) appears 
instead of the form factor. 

Much like in the case of classical Rayleigh scattering, 
Sitenko equates the imaginary part of the optical 
potential to the cross section for scattering off density 
fluctuations. It requires, then, special approximations 
and averaging procedures to separate the scattering 
amplitude for nucleon-nucleon scattering from a 
correlation property of the nuclear ground-state, in 
case the autocorrelation of density fluctuations. 

We do not wish to comment on the various approxim
ations made which, incidently, can be inferred from a 
straightforward calculation of the scattering amplitude 
corresponding to an interaction 

• r dq 
£ v(r0-ti)= / e^r°n(q)v(q) . 
i J (2TT)3 

We wish to stress the point that ImU appears propor
tional to what is essentially G2(12,l+2+). The exact 

27 R. J. Eden, Nuclear Reactions, edited by P. M. Endt and 
M. Demeur, (North-Holland Publishing Company, Amsterdam, 
1959), p. 1. 

28 R. Glauber, Lectures in Theoretical Physics (Interscience 
Publishers, Inc., New York, 1959), p. 406. 
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self-energy can in fact be written as a functional of G<i, 
but not in the coordinate arrangement which is equiva
lent to the density autocorrelation function G2(12,l+2+). 
It is typical for a Green's functions approach that the 
quantities it sets out to calculate like the momentum 
distribution or the pair correlation functioned related 
to G2(12,l+2+) have classical analogs. However, the 
calculation of those functions leads to the appearance 
of Green's functions with arbitrary coordinate arrange
ments having no classical counterpart. Sitenko's final 
answer has an intuitive appeal, as its classical analogous 
already shows, but it is hard to test its reliability in a 
systematic way. It seems unlikely that his approach 

is a first approximation in an attempt to incorporate 
successive correlations. 
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